A method for colocating satellite XCO2 data to ground-based data and its application to ACOS-GOSAT and TCCON
نویسندگان
چکیده
Satellite measurements are often compared with higher-precision ground-based measurements as part of validation efforts. The satellite soundings are rarely perfectly coincident in space and time with the ground-based measurements, so a colocation methodology is needed to aggregate “nearby” soundings into what the instrument would have seen at the location and time of interest. We are particularly interested in validation efforts for satellite-retrieved total column carbon dioxide (XCO2 ), where XCO2 data from Greenhouse Gas Observing Satellite (GOSAT) retrievals (ACOS, NIES, RemoteC, PPDF, etc.) or SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) are often colocated and compared to ground-based column XCO2 measurement from Total Carbon Column Observing Network (TCCON). Current colocation methodologies for comparing satellite measurements of total column dry-air mole fractions of CO2 (XCO2 ) with ground-based measurements typically involve locating and averaging the satellite measurements within a latitudinal, longitudinal, and temporal window. We examine a geostatistical colocation methodology that takes a weighted average of satellite observations depending on the “distance” of each observation from a ground-based location of interest. The “distance” function that we use is a modified Euclidian distance with respect to latitude, longitude, time, and midtropospheric temperature at 700 hPa. We apply this methodology to XCO2 retrieved from GOSAT spectra by the ACOS team, cross-validate the results to TCCON XCO2 ground-based data, and present some comparisons between our methodology and standard existing colocation methods showing that, in general, geostatistical colocation produces smaller mean-squared error.
منابع مشابه
A method for evaluating bias in global measurements of CO2 total columns from space
We describe a method of evaluating systematic errors in measurements of total column dry-air mole fractions of CO2 (XCO2) from space, and we illustrate the method by applying it to the v2.8 Atmospheric CO2 Observations from Space retrievals of the Greenhouse Gases Observing Satellite (ACOS-GOSAT) measurements over land. The approach exploits the lack of large gradients in XCO2 south of 25S to i...
متن کاملValidation of TANSO-FTS/GOSAT XCO2 and XCH4 glint mode retrievals using TCCON data from near-ocean sites
The thermal And near infrared sensor for carbon observations Fourier transform spectrometer (TANSOFTS) on board the Greenhouse Gases Observing Satellite (GOSAT) applies the normal nadir mode above the land (“land data”) and sun glint mode over the ocean (“ocean data”) to provide global distributions of columnaveraged dry-air mole fractions of CO2 and CH4, or XCO2 and XCH4. Several algorithms ha...
متن کاملAtmospheric carbon dioxide retrieved from the Greenhouse gases Observing SATellite (GOSAT): Comparison with ground-based TCCON observations and GEOS-Chem model calculations
[1] We retrieved column-averaged dry air mole fractions of atmospheric carbon dioxide (XCO2) from backscattered short-wave infrared (SWIR) sunlight measured by the Japanese Greenhouse gases Observing SATellite (GOSAT). Over two years of XCO2 retrieved from GOSAT is compared with XCO2 inferred from collocated SWIR measurements by seven ground-based Total Carbon Column Observing Network (TCCON) s...
متن کاملIntercomparison of Carbon Dioxide Products Retrieved from GOSAT Short-Wavelength Infrared Spectra for Three Years (2010–2012)
This paper presents the comparison of two CO2 datasets from the National Institute for Environmental Studies (NIES) of Japan and the Atmospheric CO2 Observations from Space (ACOS) of NASA for three years (2010 to 2012). Both CO2 datasets are retrieved from the Greenhouse gases Observing SATellite (GOSAT) short-wavelength infrared spectra over High gain surface land. In this three-year period, t...
متن کاملThe ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization
Here, we report preliminary estimates of the column averaged carbon dioxide (CO2) dry air mole fraction, XCO2 , retrieved from spectra recorded over land by the Greenhouse gases Observing Satellite, GOSAT (nicknamed “Ibuki”), using retrieval methods originally developed for the NASA Orbiting Carbon Observatory (OCO) mission. After screening for clouds and other known error sources, these retrie...
متن کامل